Alternative Therapy to Antibiotics: CRISPR-Cas antimicrobials

Author :  

Year-Number: 2020-1
Language : İngilizce
Konu : Gene Editing
Number of pages: 30-35
Mendeley EndNote Alıntı Yap

Abstract

Antibiotics affect specific mechanisms of bacteria by targeting cellular pathways or functions such as inhibition of cell wall synthesis, cell membrane function, protein synthesis or nucleic acid synthesis. They can’t selectively kill targeted pathogens in the mixed microbial population with these mechanisms. Antibiotics cause dysfunction not only of the bacteria that cause infection but also of the beneficial microbiota members in the host. Currently, there is no specific antibiotic strategy targeting only virulent or antibiotic-resistant bacteria. Current antibiotic strategies aren’t specific; resistant bacteria allow the spread of resistance genes in the bacterial population. Recently, new molecular techniques to deal with antimicrobial resistance have been introduced. With the development of genetic engineering technologies, new antimicrobial products can be produced that specifically target virulent or antibiotic-resistant bacteria. The most important of these is the CRISPR-Cas mechanism, which is defined as the adaptive immune system of bacteria. CRISPR-based antimicrobials could be our newest defense against bacteria. Researchers could knock out plasmid-mediated antibiotic resistance genes, preventing the spread of resistance. This review will discuss antibiotic resistance, CRISPR-Cas9 and its applications against bacteria itself, which will be an important method to prevent the clonal spread of resistant strains, providing a unique solution to the global problem.

Keywords

Abstract

Antibiotics affect specific mechanisms of bacteria by targeting cellular pathways or functions such as inhibition of cell wall synthesis, cell membrane function, protein synthesis or nucleic acid synthesis. They can’t selectively kill targeted pathogens in the mixed microbial population with these mechanisms. Antibiotics cause dysfunction not only of the bacteria that cause infection but also of the beneficial microbiota members in the host. Currently, there is no specific antibiotic strategy targeting only virulent or antibiotic-resistant bacteria. Current antibiotic strategies aren’t specific; resistant bacteria allow the spread of resistance genes in the bacterial population. Recently, new molecular techniques to deal with antimicrobial resistance have been introduced. With the development of genetic engineering technologies, new antimicrobial products can be produced that specifically target virulent or antibiotic-resistant bacteria. The most important of these is the CRISPR-Cas mechanism, which is defined as the adaptive immune system of bacteria. CRISPR-based antimicrobials could be our newest defense against bacteria. Researchers could knock out plasmid-mediated antibiotic resistance genes, preventing the spread of resistance. This review will discuss antibiotic resistance, CRISPR-Cas9 and its applications against bacteria itself, which will be an important method to prevent the clonal spread of resistant strains, providing a unique solution to the global problem.

Keywords


  • Adedeji, W. A. (2016). THE TREASURE CALLED

  • Adedeji, W. A. (2016). THE TREASURE CALLEDANTIBIOTICS. Annals of Ibadan postgraduate medicine, 14(2), 56–57.

  • Adli, M. (2018). The CRISPR tool kit for genome editing andbeyond. Nature communications, 9(1), 1911. doi:10.1038/s41467- 018-04252-2

  • Allen, H. K., Moe, L,, A, Rodbumrer, J., Gaarder, A.,Handelsman, J. (2009). Functional metagenomics reveals diversebeta-lactamases in a remote Alaskan soil. ISME J, 3(2):243–251. doi:10.1038/ismej.2008.86

  • Aminov, R. I. (2009). The role of antibiotics and antibioticresistance in nature. Environ. Microbiol, 11, 2970– 2988. doi:10.1111/j.1462-2920.2009.01972.x

  • Baquero, F., Martínez, J. L., Cantón, R. (2008). Antibiotics andantibiotic resistance in water environments. Curr Opin Biotechnol,19, 260-265.

  • Barrangou, R., Fremaux, C., Deveau, H., et al. (2007). CRISPRprovides acquired resistance against viruses inprokaryotes. Science. 2007;315(5819):1709–1712. doi:10.1126/science.1138140

  • Barrangou, R., Marraffini, L. A. (2014). CRISPR-Cas systems:Prokaryotes upgrade to adaptive immunity. Molecular cell, 54(2), 234–244. doi:10.1016/j.molcel.2014.03.011

  • Bhullar, K., Waglechner, N., Pawlowski, A., et al. (2012).Antibiotic resistance is prevalent in an isolated cavemicrobiome. PLoS One, 7(4):e34953. doi:10.1371/journal.pone.0034953

  • Bikard, D., Euler, C. W., Jiang, W., et al. (2014). ExploitingCRISPR-Cas nucleases to produce sequence-specificantimicrobials. Nat Biotechnol, 32(11):1146–1150. doi:10.1038/nbt.3043

  • Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis,R. J. H., Snijders, A. P., et al. (2008). Small CRISPR RNAs GuideAntiviral Defense in Prokaryotes. Science, 321(5891):960–4. doi:10.1126/science.1159689

  • CDC. Antibiotic Resistance Threats in the United States, 2019.Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019.

  • Chokshi, A., Sifri, Z., Cennimo, D., Horng, H. (2019). GlobalContributors to Antibiotic Resistance. Journal of globalinfectious diseases, 11(1),36–42. doi:10.4103/jgid.jgid_110_18

  • Citorik, R. J., Mimee, M., Lu, T. K. (2014). Sequence-specificantimicrobials using efficiently delivered RNA-guidednucleases. Nat Biotechnol, 32(11):1141–1145. doi:10.1038/nbt.3011

  • Davies, J. (2006). Where have All the Antibiotics Gone?. TheCanadian journal of infectious diseases & medical microbiology =Journal canadien des maladies infectieuses et de la microbiologie medicale, 17(5), 287–290. doi:10.1155/2006/707296

  • Doudna, J. A., Charpentier, E. (2014). Genome editing. The newfrontier of genome engineering with CRISPR-Cas9. Science (NewYork, N.Y.), 346(6213), 1258096. doi:10.1126/science.1258096

  • Fauci, A. S., Touchette, N. A., Folkers, G. K. (2005). Emerginginfectious diseases: a 10-year perspective from the NationalInstitute of Allergy and Infectious Diseases. Emerging infectious diseases, 11(4), 519–525. doi:10.3201/eid1104.041167

  • Fichtner, F., Urrea Castellanos, R., Ülker, B. (2014). Precisiongenetic modifications: a new era in molecular biology and cropimprovement. Planta, 239(4), 921–939. doi:10.1007/s00425-014- 2029-y

  • Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd (2013). ZFN,TALEN, and CRISPR/Cas-based methods for genomeengineering. Trends in biotechnology, 31(7), 397–405. doi:10.1016/j.tibtech.2013.04.004

  • Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., … Zhang, Y.(2017). Single Cas9 nickase induced generation of NRAMP1knockin cattle with reduced off-target effects. Genome biology, 18(1), 13. doi:10.1186/s13059-016-1144-4

  • Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A.,Barrangou, R., Boyaval, P., … Moineau, S. (2010). TheCRISPR/Cas bacterial immune system cleaves bacteriophage andplasmid DNA. Nature, 468(7320), 67–71. doi:10.1038/nature09523

  • Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A.,Torres, S. E., … Qi, L. S. (2013). CRISPR-mediated modularRNA-guided regulation of transcription ineukaryotes. Cell, 154(2), 442–451. doi:10.1016/j.cell.2013.06.044

  • Gomaa, A. A., Klumpe, H. E., Luo, M. L., Selle, K., Barrangou, R.,& Beisel, C. L. (2014). Programmable removal of bacterial strainsby use of genome-targeting CRISPR-Cas systems. mBio, 5(1), e00928-13. doi:10.1128/mBio.00928-13

  • Groer, M. W., Luciano, A. A., Dishaw, L. J., Ashmeade, T. L.,Miller, E., & Gilbert, J. A. (2014). Development of the preterminfant gut microbiome: a research priority. Microbiome, 2, 38. doi:10.1186/2049-2618-2-38

  • Gupta, R. M., & Musunuru, K. (2014). Expanding the geneticediting tool kit: ZFNs, TALENs, and CRISPR-Cas9. The Journalof clinical investigation, 124(10), 4154–4161. doi:10.1172/JCI72992

  • Hall, B. G., & Barlow, M. (2004). Evolution of the serine beta-lactamases: past, present and future. Drug resistance updates :reviews and commentaries in antimicrobial and anticancerchemotherapy, 7(2), 111–123. doi:10.1016/j.drup.2004.02.003

  • Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development andapplications of CRISPR-Cas9 for genomeengineering. Cell, 157(6), 1262–1278. doi:10.1016/j.cell.2014.05.010

  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A.(1987). Nucleotide sequence of the iap gene, responsible foralkaline phosphatase isozyme conversion in Escherichia coli, andidentification of the gene product. Journal ofbacteriology, 169(12), 5429–5433. doi:10.1128/jb.169.12.5429-

  • Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of

  • Jiang, F., Doudna, J. A. (2015). The structural biology ofCRISPR-Cas systems. Current opinion in structural biology, 30, 100–111. doi:10.1016/j.sbi.2015.02.002

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A.,Charpentier, E. (2012). A programmable dual-RNA-guided DNAendonuclease in adaptive bacterial immunity. Science (New York, N.Y.), 337(6096), 816–821. doi:10.1126/science.1225829

  • Khardori, N. (2006). Antibiotics—Past, Present, and Future.Medical Clinics of North America, 90(6), 1049– 1076. doi:10.1016/j.mcna.2006.06.007

  • Khatodia, S., Bhatotia, K., Passricha, N., Khurana, S. M., Tuteja,N. (2016). The CRISPR/Cas Genome-Editing Tool: Applicationin Improvement of Crops. Frontiers in plant science, 7, 506. doi:10.3389/fpls.2016.00506

  • Kim, J. S., Cho, D. H., Park, M., Chung, W. J., Shin, D., Ko, K. S.,Kweon, D. H. (2016). CRISPR/Cas9-Mediated Re-Sensitizationof Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases. Journal of microbiology and biotechnology, 26(2), 394–401. doi:10.4014/jmb.1508.08080

  • Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). Howantibiotics kill bacteria: from targets to networks. Nature reviews. Microbiology, 8(6), 423–435. doi:10.1038/nrmicro2333

  • Krishnamurthy, M., Moore, R. T., Rajamani, S., & Panchal, R. G.(2016). Bacterial genome engineering and synthetic biology:combating pathogens. BMC microbiology, 16(1), 258. doi:10.1186/s12866-016-0876-3

  • Lock, R. L., Harry, E. J. (2008). Cell-division inhibitors: newinsights for future antibiotics. Nature reviews. Drug discovery, 7(4), 324–338. doi:10.1038/nrd2510

  • Long, C., Amoasii, L., Mireault, A. A., McAnally, J. R., Li, H.,Sanchez-Ortiz, E., … Olson, E. N. (2016). Postnatal genomeediting partially restores dystrophin expression in a mouse modelof muscular dystrophy. Science (New York, N.Y.), 351(6271), 400–403. doi:10.1126/science.aad5725

  • Lu, T. K., Collins, J. J. (2009). Engineered bacteriophage targetinggene networks as adjuvants for antibiotic therapy. Proceedings ofthe National Academy of Sciences of the United States of America, 106(12), 4629–4634. doi:10.1073/pnas.0800442106

  • Ma, Y., Zhang, L., & Huang, X. (2014). Genome modification byCRISPR/Cas9. The FEBS journal, 281(23), 5186–5193. doi:10.1111/febs.13110

  • Martínez, I., Stegen, J. C., Maldonado-Gómez, M. X., Eren, A.M., Siba, P. M., Greenhill, A. R., & Walter, J. (2015). The gutmicrobiota of rural papua new guineans: composition, diversitypatterns, and ecological processes. Cell reports, 11(4), 527–538. doi:10.1016/j.celrep.2015.03.049

  • Nelson, C. E., Hakim, C. H., Ousterout, D. G., Thakore, P. I.,Moreb, E. A., Castellanos Rivera, R. M., … Gersbach, C. A.(2016). In vivo genome editing improves muscle function in amouse model of Duchenne muscular dystrophy. Science (NewYork, N.Y.), 351(6271), 403–407. doi:10.1126/science.aad5143

  • Nemudryi, A. A., Valetdinova, K. R., Medvedev, S. P., Zakian, S.M. (2014). TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta naturae, 6(3), 19–40.

  • Nerys-Junior, A., Braga-Dias, L. P., Pezzuto, P., Cotta-de-Almeida, V., Tanuri, A. (2018). Comparison of the editingpatterns and editing efficiencies of TALEN and CRISPR-Cas9when targeting the human CCR5 gene. Genetics and molecularbiology, 41(1), 167–179. doi:10.1590/1678-4685-GMB-2017-0065Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S.I., Dohmae, N., … Nureki, O. (2014). Crystal structure of Cas9 incomplex with guide RNA and target DNA. Cell, 156(5), 935–949. doi:10.1016/j.cell.2014.02.001

  • Njoroge, J., Sperandio, V. (2009). Jamming bacterialcommunication: new approaches for the treatment of infectiousdiseases. EMBO molecular medicine, 1(4), 201–210. doi:10.1002/emmm.200900032

  • O’Neill, J. (2016). Tackling Drug-Resistant Infections Globally:Final Report and Recommendations, The Review onAntimicrobial Resistance. London, UK: World Health Organization.

  • OECD/WHO/FAO/OIE. Tackling antimicrobial resistanceensuring sustainable R&D. OECD/WHO/FAO/OIE; 2017.[Accessed 9 January 2020] http://www. oecd.org/g20/summits/hamburg/Tackling-Antimicrobial-

  • Peters, J. M., Silvis, M. R., Zhao, D., Hawkins, J. S., Gross, C. A.,& Qi, L. S. (2015). Bacterial CRISPR: accomplishments andprospects. Current opinion in microbiology, 27, 121–126. doi:10.1016/j.mib.2015.08.007

  • Quinn, R. (2013). Rethinking antibiotic research anddevelopment: World War II and the penicillincollaborative. American journal of public health, 103(3), 426–434. doi:10.2105/AJPH.2012.300693

  • Ram, G., Ross, H. F., Novick, R. P., Rodriguez-Pagan, I., & Jiang,D. (2018). Conversion of staphylococcal pathogenicity islands toCRISPR-carrying antibacterial agents that cure infections inmice. Nature biotechnology, 36(10), 971–976.Raper, K. (1952). A Decade of Antibiotics inAmerica. Mycologia,44(1), 1-59. Retrieved January 18, 2020, from www.jstor.org/stable/4547566

  • Savić, N., & Schwank, G. (2016). Advances in therapeuticCRISPR/Cas9 genome editing. Translational research : thejournal of laboratory and clinical medicine, 168, 15–21. doi:10.1016/j.trsl.2015.09.008

  • Scarafile, G. (2016). Antibiotic resistance: current issues andfuture strategies. Reviews in Health Care, 7(1), 3-16. doi:https://doi.org/10.7175/rhc.v7i1.1226

  • Schimmel, P., Tao, J., & Hill, J. (1998). Aminoacyl tRNAsynthetases as targets for new anti-infectives. FASEB journal :official publication of the Federation of American Societies for Experimental Biology, 12(15), 1599–1609.

  • Schmidt C. (2019). Phage therapy's latest makeover. Naturebiotechnology, 37(6), 581–586. doi:10.1038/s41587-019-0133-z

  • Shama G. (2008). Auntibiotics: the BBC, penicillin, and thesecond world war. BMJ (Clinical research ed.), 337, a2746. doi:10.1136/bmj.a2746

  • Simpson, A. J. (2002). Rational Antibiotic Therapy. Surgery (Oxford), 20(8), 177–179. doi:10.1383/surg.20.8.177.14524

  • Slama, T. G., Amin, A., Brunton, S. A., File, T. M., Jr, Milkovich,G., Rodvold, K. A., … Council for Appropriate and RationalAntibiotic Therapy (CARAT) (2005). A clinician's guide to the

  • Appropriate and Rational Antibiotic Therapy (CARAT)criteria. The American journal of medicine, 118 Suppl 7A, 1S–6S. doi:10.1016/j.amjmed.2005.05.007

  • Sorek, R., Kunin, V., Hugenholtz, P. (2008). CRISPR--awidespread system that provides acquired resistance againstphages in bacteria and archaea. Nature reviews. Microbiology, 6(3), 181–186. doi:10.1038/nrmicro1793

  • Su, Z., Honek, J. F. (2007). Emerging bacterial enzymetargets. Current opinion in investigational drugs (London, England : 2000), 8(2), 140–149.

  • Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna,J. A. (2014). DNA interrogation by the CRISPR RNA-guidedendonuclease Cas9. Nature, 507(7490), 62–67. doi:10.1038/nature13011

  • Tabebordbar, M., Zhu, K., Cheng, J., Chew, W. L., Widrick, J. J.,Yan, W. X., … Wagers, A. J. (2016). In vivo gene editing indystrophic mouse muscle and muscle stem cells. Science (NewYork, N.Y.), 351(6271), 407–411. doi:10.1126/science.aad5177

  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson,M., Monnet, D. L., … WHO Pathogens Priority List WorkingGroup (2018). Discovery, research, and development of newantibiotics: the WHO priority list of antibiotic-resistant bacteriaand tuberculosis. The Lancet. Infectious diseases, 18(3), 318–327. doi:10.1016/S1473-3099(17)30753-3

  • Ünal, S. (2005). Rasyonel antibiyotik kullanımı. Ankem Derg. 19(Suppl. 2); 180-1.

  • Wang, K., Nıcholaou, M. (2017). Suppression of AntimicrobialResistance in MRSA Using CRISPR-dcas9. Clin Lab Sci, 30(4), 207. https://doi.org/10.29074/ascls.30.4.207

  • World Health Organization (WHO). 2011. “European strategicaction plan on antibiotic resistance”. [Accessed 9 January 2020]http://www.euro.who.int/__data/assets/pdf_file/0008/147734/wd 14E_AntibioticResistance_111380.pdf

  • World Health Organization (WHO). 2015. “Global Action Planon Antimicrobial Resistance”. [Accessed 9 January 2020]http://www.wpro.who.int/entity/drug_resistance/resources/globa l_action_plan_eng.pdf

  • Wright G. D. (2007). The antibiotic resistome: the nexus ofchemical and genetic diversity. Nature reviews.Wright G. D. (2010). Antibiotic resistance in the environment: alink to the clinic?. Current opinion in microbiology, 13(5), 589– 594. doi:10.1016/j.mib.2010.08.005

  • Yosef, I., Manor, M., Kiro, R., & Qimron, U. (2015). Temperateand lytic bacteriophages programmed to sensitize and killantibiotic-resistant bacteria. Proceedings of the National Academyof Sciences of the United States of America, 112(23), 7267–7272. doi:10.1073/pnas.1500107112

  • Zion Market Research. “CRISPR Genome Editing Market byApplications (Genome Editing, Genetic Engineering, GeneLibrary, Human Stem Cells, and Other) and by End User(Biotechnology Companies, Pharmaceutical Companies, andOther): Global Industry Perspective, Comprehensive Analysisand Forecast, 2017 – 2024”. [Accessed 10 January 2020] https://www.zionmarketresearch.com/toc/crispr-genome-

                                                                                                                                                                                                        
  • Article Statistics